970G1: Data Science Research Methods

Report (1000 Words) T1 Week 8

Word Count: 987

Contents

Introduction	3
Background	3
The Dataset	3
Methods	6
Hypotheses	6
Analysis plan	6
Data Cleaning & EDA	7
Duplicates	7
"Non-movies"	7
"Very Low" Review Count	7
Missing data	8
Assessing IMDb-profit Assumption	9
Older Movies	10
Summary	11
Results	12
Top 10 Highest Rated Movies	12
Top 5 Most Common Genres	12
Romance vs Horror: Two-Tailed Welch's t-test	14
Choosing a Director	15
Two-tailed One-way ANOVA	15
Tukev's HSD	15
Choosing a Lead Actor	16
Two-tailed One-way ANOVA	16
Tukey's HSD	16
Conclusion	17
References	18

Introduction

Background

SussexBudgetProductions' recent £500k comedy-action-thriller grossed only £100k. The CEO suggests making a romance or horror next. I aim to recommend a genre, director, and lead actor that will achieve the highest IMDb score and thus profit.

The Dataset

The *IMDb dataset* (IMDb, 2024), contains 5043 rows with 28 columns. Ostensibly, each row refers to a unique movie created between 1916-2016. **Table 1** outlines each column, along with descriptions, data levels and summary statistics or examples:

Table 1: Summary Table (Before data cleaning) for Features in the IMDb dataset

Feature	Description	Data Level	Summary Statistics / Examples
actor_1_facebook_likes	The number of likes on the lead actor's Facebook page/profile	Ratio	Range: $0-640,000$ \bar{x} : $6,560.05$ σ : $15,020.76$
actor_1_name	The name of the movie's lead actor	Nominal	2,098 unique values e.g., "Kate Winslet", "Joe Mantegna", "Emma Stone"
actor_2_facebook_likes	The number of likes on the 2nd lead actor's Facebook page/profile	Ratio	Range: $0-137,000$ \bar{x} : 1,651.75 σ : 4,042.44
actor_2_name	The name of the movie's 2nd lead actor	Nominal	3,033 unique values e.g., "Stockard Channing", "William Hurt", "Christopher Lee"
actor_3_facebook_likes	The number of likes on the 3rd lead actor's Facebook page/profile	Ratio	Range: $0-23,000$ \bar{x} : 645.01 σ : 1,665.04

Note: This table was produced in the PDF's .tex file, not the .py script. However, statistics in the table are found in the .py script (lines 38-56)

actor_3_name	The name of the movie's 3rd lead actor	Nominal	3,522 unique values e.g., "G.W. Bailey", "Nick Gomez", "Jon Lovitz"
aspect_ratio	The width-to-height ratio the movie was filmed in	Ratio	23 unique values e.g., 1.33, 1.78, 1.85
budget	Movie's budget, expressed in movie's native currency (e.g., US movie = USD(\$), South Korean movie = KRW(\U))	Ratio	Range: $10^2 - 10^{10}$ \bar{x} : 39,752,620 σ : 206,114,900
cast_total_facebook_likes	The cumulative number of likes on the cast's Facebook pages/profiles	Ratio	Range: $0-656730$ \bar{x} : 9699.06 σ : 18163.80
color	Whether the movie is in colour or black & white	Nominal	3 unique values (1 NaN) e.g., "Color", "Black and White"
content_rating	The (US-based) content rat- ing for the movie	Nominal	19 unique values e.g., "PG", "R", "PG-13"
country	The country the movie was made in	Nominal	66 Unique values (2 ["New Line", "Official Site"] are countries) e.g., "USA", "Canada", "UK"
director_facebook_likes	The number of likes the director's Facebook page/profile has	Ratio	Range: $0-23000$ \bar{x} : 686.51 σ : 2813.33
director_name	The name of the movie's di- rector	Nominal	2399 unique values e.g., "Dario Argento", "Tarsem Singh", "James Foley"
duration	The duration of the movie, in minutes	Ratio	Range: $7-511$ \bar{x} : 107.20 σ : 25.20
facenumber_in_poster	The number of faces that appear in the movie's pro- motional poster	Ratio	Range: $0-43$ \bar{x} : 1.37 σ : 2.01

genres	The genre(s) of the movie	Nominal	914 unique values
			e.g., "Comedy—Family", "Action—Adventure", "Crime—Drama"
gross	The amount of revenue (in US Dollars) generated by the movie in the US & Canadian market	Ratio	Range: $$10^2 - 10^8 \bar{x} : $$48,468,410$ σ : $$68,452,990$
imdb_score	The average IMDb score of the movie	Ordinal	Rating scale: $1-10$ \bar{x} : 6.47 σ : 1.06 Mode: 6.7
language	The language the movie is filmed in	Nominal	47 unique values (1 NaN) e.g., "English", "German", "French"
movie_facebook_likes	The number of like the movie's Facebook page has	Ratio	Range: $0-349000$ \bar{x} : 7525.96 σ : 19320.45
movie_imdb_link	The URL for the movie's IMDb page	Nominal	4919 unique values
movie_title	The title of the movie	Nominal	4917 unique values e.g., "The Matrix", "Brooklyn", "The Princess Diaries"
num_critic_for_reviews	The number of critical re- views given for the movie	Ratio	Range: 1-813 \bar{x} : 140.19 σ : 121.60
num_user_for_reviews	The number of written re- views given for the movie	Ratio	Range: $1-5060$ \bar{x} : 272.77 σ : 377.98
num_voted_users	The number of IMDb re- views given for the movie	Ratio	Range: $1-10^6$ \bar{x} : 83,668.16 σ : 138,485.30
plot_keywords	A list of keywords to de- scribe the movie	Nominal	4761 unique values e.g., "hitman—outlaw", "based on comic book—dc comics", "moral challenge—morality"
title_year	The year the movie was re- leased	Ordinal	Year range: 1916–2016 Mode: 2009

Methods

Hypotheses

- H_1 : "Significant difference in average IMDb score between romance and horror movies"
- H_2 : " ≥ 1 ("better" genre) director with a significantly higher average IMDb score than the rest"

 H_3 : " ≥ 1 ("better" genre) lead actor with a significantly higher average IMDb score than the rest"

Analysis plan

Welch's t-test checks if two means differ without assuming equal population variances. One-way ANOVAs assess if any mean differs, and Tukey's HSD identifies the specific means that significantly differ. Significant differences allow us to select feature levels with the highest IMDb scores (i.e. genre, director & actor). If none are significant, solutions can be discussed. **Figure 1** visualises this analysis:

Note: This figure was produced in the PDF's .tex file, not the .py script.

Data Cleaning & EDA

Duplicates

movie_title, *title_year*, and *director_name* were used to uniquely identify movies. Upon grouping by these features, 124 duplicate rows were removed.

"Non-movies"

Rows referring to "non-movies" (e.g., TV shows), aren't relevant to this analysis and should be removed. Since every movie has a director, inspecting the data shows known "non-movie" rows do not (e.g., index-459: Daredevil). Removing these drops 102 rows.

"Very Low" Review Count

Too few reviews means sample IMDb scores are unreliable estimates; data inspection could help define "too few".

Figure 3: Logarithmic Distributions of Number of Unique Reviewers for Each Movie

Figure 2 shows an approximate log-normal distribution, thus removing values where $x < 3\sigma$ is inappropriate (*i.e.* $\bar{x} - \sigma = -55, 658.79$). For *num_voted_users*, converting to a logarithmic x-axis shows the negative skew (**Figure 3**) is mainly due to reviews ≤ 1000 . Thus 364 rows with ≤ 1000 reviews were removed.

Missing data

Missing data in key features is problematic. Examining missing values in romance and horror movies (removing 17 romance-horror rows) and comparing them to the overall dataset avoids inadvertently removing these genres if they happened to contribute disproportionately to missing data.

Column Name	Nulls	Percentage of Total Rows
gross	508	11.4
budget	306	6.9
aspect_ratio	115	2.6
content_rating	106	2.4
$plot_keywords$	32	0.7

Table 2: Top 5 Columns with the Most Nulls (Entire Dataset).

Column Name	Nulls	Percentage of Total Rows
gross	97	20.5
budget	24	5.1
$aspect_ratio$	14	3.0
$content_rating$	11	2.3
plot_keywords	2	0.4

Table 3: Top 5 Columns with the Most Nulls (Horror Subset, N = 474).

Table 4: Top 5 Columns with the Most Nulls (Romance Subset, N = 1002).

Column Name	Nulls	Percentage of Total Rows
gross	97	9.7
budget	71	7.1
$\operatorname{content_rating}$	24	2.4
$aspect_ratio$	19	1.9
plot_keywords	5	0.5

Table 3 & 4 show subsets aren't disproportionately representative of nulls. Removing them will not omit our target genres. *gross* and *budget* are our measure of profit when assessing the IMDb-profit assumption, so we'll remove null rows from these columns. Doing so drops 263.

Assessing IMDb-profit Assumption

Creating a *profit* column (gross minus budget) and correlating it with *imdb_score*:

A near-zero correlation r(3609) = .03, p < .05. The lowest data point in Figure 4 shows the budget is in native currency (budget = 12, 215, 500, 000, gross = 2, 201, 412), not USD. Furthermore, gross and budgetaren't inflation-adjusted. After removing 778 non-US movies and adjusting values to 2023 USD using CPI data (Bureau of Labor Statistics, 2024), the correlation becomes stronger but still weak at 0.26, limiting conclusions.

Older Movies

I kept all release years since IMDb scores are consistent over time for both genres:

Summary

42% of the data was removed, reducing from 5,043 to 2,918. This limits the analysis to the US market but greatly improves reliability.

Results

Top 10 Highest Rated Movies

Table 5 shows the top 10 highest-rated movies, ranked first by IMDb score, then by review count.

Rank	Movie Title	Year Released	IMDb Score	Number of User Reviews
1st	The Shawshank Redemption	1994	9.3	1,689,764
2nd	The Godfather	1972	9.2	$1,\!155,\!770$
3rd	The Dark Knight	2008	9.0	$1,\!676,\!169$
4th	The Godfather: Part II	1974	9.0	$790,\!926$
5th	Pulp Fiction	1994	8.9	$1,\!324,\!680$
6th	The Lord of the Rings: The Re- turn of the King	2003	8.9	1,215,718
$7 \mathrm{th}$	Schindler's List	1993	8.9	865,020
$8 \mathrm{th}$	The Good, the Bad and the Ugly	1966	8.9	$503,\!509$
$9 \mathrm{th}$	12 Angry Men	1957	8.9	447,785
10th	Inception	2010	8.8	1,468,200

Table 5: Top 10 Movies with the Highest IMDb Ratings.

Note: Based on Movies with N > 1000 User Reviews, including non-US movies

Top 5 Most Common Genres

Table 6 shows the top 5 genres by movie count, supported by Figure 7 showing IMDb score distributions and summary statistics.

Table	6:	Top	5	Indiv	vidual	Genres	with	the	Most	Number	of	Movies.
-------	----	-----	---	-------	--------	--------	------	-----	------	--------	----	---------

Genre	Number of Movies
Drama	2,290
Comedy	1,725
Thriller	1,269
Action	1,046
Romance	1,019

Note: Based on Movies with N > 1000 User Reviews, including non-US movies

Romance vs Horror: Two-Tailed Welch's t-test

Given the IMDb distributions are approximately Gaussian:

Figure 8: P-P Plot Comparing the Empirical Cumulative Distribution Functions of Romance (red) and Horror (green) Movie IMDb Scores to a Theoretical Gaussian CDF

Welch's t-test shows a significant difference between IMDb scores for *romance* ($\bar{x} = 6.35$, $\sigma = 0.95$, N = 663) and *horror* ($\bar{x} = 5.87$, $\sigma = 0.98$, N = 291) movies, t(537.40) = 7.03, p < .05, 95% CI [0.346, 0.614]. Rejecting the null hypothesis, *romance* movies have a significantly higher average IMDb.

Choosing a Director

Two-tailed One-way ANOVA

ANOVA found at least 1 mean was significantly different F(125, 199) = 1.89, p < 0.05, thus the null hypothesis is rejected.

Tukey's HSD

Figure 10: Mean Plot Comparing Average IMDb Scores of Directors Found to be Significantly Different by Tukey's HSD

No director "dominates," but there's a bifurcation (red line) into "higher" and "lower" IMDb averages. The error bars show *Richard Linklater*, *Stephen Daldry* and *Tim Burton* have significantly higher averages than the "lower" group (green line). Given *Linklater* has the highest, they are the recommended director.

Choosing a Lead Actor

Two-tailed One-way ANOVA

ANOVA found at least 1 mean was significantly different F(116, 246) = 1.81, p < 0.05, thus the null hypothesis is rejected.

Tukey's HSD

Figure 11: Mean Plot Comparing Average IMDb Scores of Actors Found to be Significantly Different by Tukey's HSD

Whilst Kate Winslet and Ryan Gosling have the highest average IMDbs, there is little to separate them. Given Winslet's average is slightly higher ($\bar{x} = 7.600$) than Gosling's ($\bar{x} = 7.525$), Winslet is the recommended actor.

Conclusion

 Table 7: Recommendations from the Analysis

Genre:	Romance
Director:	Richard Linklater
Lead Actor:	Kate Winslet

Note: This table was produced in the PDF's .tex file, not the .py script

To conclude, with a cleaned sample of 2,918 US movies, a two-tailed Welch's t-test revealed *romance* movies - the recommended genre - have a significantly higher average IMDb score compared to *horror* movies. Furthermore, two-tailed one-way ANOVAs, followed by post-hoc Tukey HSDs provided *Richard Linklater* as recommended director, with *Kate Winslet* as recommended lead.

Such a triplet of suggestions is a best estimate for maximising profit from the next movie, with the following limitations kept in mind:

- 1. Conclusions only apply to the US market.
- 2. IMDb score shares a weak positive correlation with profit, and an undetermined causal relation.
- 3. Director/actor selection post Tukey's HSD arguably lacks statistical justification.
- 4. Only directors and actors who have previously appeared in romance movies were considered (since they have relevant data that can be analysed) - non-romance directors/actors may still outperform those recommended.

References

Bureau of Labor Statistics Data. (2024). Bureau of Labor Statistics. https://data.bls.gov/timeseries/CUUR0000SA0

IMDb: Ratings, Reviews, and Where to Watch the Best Movies & TV Shows. (2024). IMDb. $\rm https://www.imdb.com/$