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Abstract

Misinformation is a major challenge for democratic societies, with social media platforms
struggling to manage its volume and impact. Artificial neural networks (ANNs) offer promising
solutions for misinformation detection. This essay explores different domains of misinformation —
text, images, multimodal, propagation through social networks — highlighting ANNs’ versatility,
accuracy, and scalability for misinformation detection. Beginning with an introduction to ANNs,
the essay then examines each domain, discussing how ANN methods can be adapted to the task
and evaluating their effectiveness. Finally, the essay explores the current use of ANNs by social
media companies for misinformation detection, the recent trajectory being adopted by major social
media platforms, and suggests future directions.
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Introduction

One’s right to participate in democracy should not depend on making ”correct” decisions.
Democracy can be defended on various grounds: ”consent of the governed,” protection from power
misuse, equality, liberty, etc. However, healthy democracies depend on informed decision-making.
Access to clear, verifiable information is essential for effective participation, extending beyond
politics into areas like healthcare (e.g., vaccination intent – – Loomba et al., 2021).

Misinformation (misleading information) and disinformation (misinformation spread to in-
tentionally deceive) have harmful effects. A literature review by Adams et al. (2023) highlights
increased distrust in media and democracy, polarisation, political disengagement, vaccine hesi-
tancy, use of harmful treatments, climate change denial and political extremism. Disinformation is
frequently used by illiberal political actors to spread propaganda (e.g., Russian disinformation in
the Baltics - Morkūnas, 2023; worldwide increases in domestic terrorism - Piazza, 2022).

A survey of 1,993 UK adults found 6% reported never encountering misinformation on social
media, with 38% encountering it ”many times” (Enock et al., 2024). Similarly, 73% of 9,680 US
respondents saw inaccurate news about the 2024 election ”at least somewhat often” (Shearer et al.,
2024). Globally, 87% of 8,000 respondents across 16 countries believed misinformation had a major
impact on politics (Quétier-Parent et al., 2023). Vosoughi et al. (2018) found political fake news
spread faster than true information on Twitter from 2006-2017. While some respondents may have
misjudged or believe misinformation (Lyons et al., 2021), there is political will to address it. A
YouGov poll showed 66% of UK adults felt social media firms should be held accountable for the
2024 riots incited by far-right users falsely claiming the Southport stabber was a Muslim asylum
seeker (Smith, 2024). A 2023 US survey of 5,115 found 55% supported government restrictions on
false information online, up from 39% in 2018 (Liedke, 2023). During COVID-19, 33% of 1,006 UK
respondents wanted social media sites to prevent disinformation, while 55% supported government
intervention (Open Knowledge Foundation, 2020).

Misinformation is harmful for democratic societies, making detection and interventions crucial
in the social-media era. Artificial neural networks (ANNs) provide effective techniques for detecting
misinformation. This essay outlines and evaluates these techniques, focusing on how ANN archi-
tectures can adapt to various misinformation-detection tasks. It then discusses the current use of
ANNs by social media companies for misinformation detection, the recent trajectory being adopted
by major social media platforms, and suggests future directions.
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Neural Networks: An Overview

Artificial neural networks (ANNs) simplistically model biological neural networks. ANNs
consist of layers of nodes (neurons). Each node is connected to every node in the previous and next
layers via edges (synapses). Figure 1 shows a simple ANN.
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Figure 1: A simple neural network.

The input layer represents each numerically-encoded feature in the training data. In a classic
example, each xi might denote the grayscale intensity of a pixel in an image of hand-drawn digits

(Deng, 2012). Each xi is fully connected to every h
(l)
j node in the l-th hidden layer.

Each connection has a weight w
(l)
ji and a bias term bj (initialised randomly), representing the

”strength” between nodes n
(l)
i and n

(l+1)
j in layer l. For node h

(l)
j , the weighted inputs are summed

and passed through an activation function ϕ(x). This function introduces non-linearity, allowing the
network to approximate more complex functions, improving model accuracy. The rectified linear
unit (ReLU) max(0, x) is typically used for hidden layers, while softmax is used for the output
layer to generate a probability distribution (e.g., predicting digits 0-9). The choice of activation
function is task-dependent (Dubey et al., 2022).
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The output of each node can be expressed as:

aj = ϕ

(∑
i

wjixi + bj

)

Each input value xi passes through each layer, activating subsequent nodes until reaching the
output layer. For example, with hand-drawn digits, the output layer could have 10 nodes, each
representing a digit from 0-9, showing the probability of the image being that digit.

Simply passing data through an ANN (forward propagation) doesn’t allow it to ”learn” –
backpropagation is essential. This algorithm requires a loss function (e.g., mean squared error,
the average squared difference between predictions and true values) and utilises gradient descent
to minimize it. By evaluating how the loss changes with the activation of the last hidden layer, the
weight Wold is updated to Wnew by subtracting the derivative δC0

δW (L) (scaled by the learning rate
η):

Wnew = Wold − η

(
δC0

δW (L)

)

This process is propagated back layer-by-layer to the input layer. Then, a new training sample
is propagated forward, and its error is propagated back again, and so on. We stop this process after
either: passing through the dataset some number of times (epochs), when the error stops updating,
or when a desired model accuracy is achieved — again, stopping rules are task-dependent. The
resulting ANN will have weights and biases that enable it to make accurate predictions on unseen
data.

Next, we’ll see how modifications of this basic ANN approach can help detect misinformation
content on social media.
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Detecting Misinformation

Text

To identify text-based misinformation, we should capture language’s properties. Language is
sequential, thus word order alters meaning. Word order then must be preserved. Word meaning
also depends on context; for instance, ”bat” can refer to a baseball bat, a mammal, or as in ”I didn’t
bat an eyelid”. Each conveys a different meaning. A basic ANN needs additional mechanisms to
model word sequences and context.

Recurrent neural networks (RNNs) adapt ANNs to textual data by using a hidden state
ht at each node, which stores previous outputs and combines them with the next sample to generate
a new output. This enables information to carry across iterations. RNNs can be unidirectional
(see Figure 2) or bidirectional, processing both past and future data points (Schuster and Paliwal,
1997). Although more difficult to train during backpropagation, RNNs apply well to text by
sequentially considering both prior and subsequent words. The recurrence relation for the hidden
state (unidirectional) is:

ht = ϕ(Whht−1 +Wxxt + b)

· · · · · ·

· · · · · ·

· · · · · ·

xt−1 xt xt+1

ht−1 ht ht+1 b

yt−1 yt yt+1

Wx Wx Wx

Wh Wh

Wy Wy Wy

Figure 2: A Simple RNN Node Evolving Over Time

One problem with this approach is that as sequential data grows, the RNN struggles to
”remember” earlier data (the vanishing gradient problem). While ReLU can help, enabling RNNs
to retain long-term information would improve text processing.

Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) adds cell states
to each node, which include 3 gates: a ”forget” gate controls how much prior context is ”for-
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gotten”, an ”input” gate regulates how much new information is stored, and an ”output” gate
determines how much stored information is outputted. Like RNNs, LSTMs can be applied bi-
directionally (Schuster and Paliwal, 1997).

LSTM is widely used for misinformation detection. Bahad et al. Bahad et al. (2019) compared
four deep learning models on two fake news datasets (N1 = 6,335, N2 = 4,009). As shown in tables
3(a) and (b), the bi-directional LSTM (BiLSTM) outperformed CNN, ”vanilla” RNN, and unidi-
rectional LSTM in training, validation, and testing, except in dataset 1, where the unidirectional
LSTM slightly outperformed BiLSTM in testing accuracy. The authors suggest that the RNN on
dataset 1 likely suffered from the vanishing gradient problem (p.81), unlike BiLSTM. Additionally,
Figure 5 of the article shows BiLSTM had the fastest convergence to long-term training accuracy.

While language is sequential, restricting models to treat it as such may not be ideal. The
Bidirectional Encoder Representations from Transformers (BERT) model (Devlin et al.,
2019) addresses this by processing the entire text sequence simultaneously through attention
layers. The input text is split into tokens, each encoded with an embedding E⃗i, initialised
randomly then learned via backpropagation. These embeddings are multiplied by three weight
vectors in the attention layer: W⃗Q, W⃗K , and W⃗V , producing the query Q⃗i, key K⃗i, and value V⃗i

vectors. The query vector represents how a token ”listens” to others, the key vector indicates how
it ”wants to be listened to” and the value vector holds the information shared during attention.

A token’s attention is found by taking its Q⃗i and computing the dot product with its and
other tokens’ K⃗i. These are converted into probabilities using softmax, then multiplied by their
respective V⃗i. The results are normalised and summed for the attention output. The weight vectors
are optimised via backpropagation. BERT uses multiple attention layers connected by feed-forward
networks and can be fine-tuned for specific tasks, like classification.

Rakib Mollah et al. (2023) trained a RoBERTa (Liu et al., 2019) model – an optimised
pre-trained version of BERT – on the WELFake dataset containing 72,134 labelled news articles.
RobERTa achieved 0.9976 accuracy – just 34 mistakes from 14,308 test samples. While impressive,
RoBERTa is computationally expensive, consisting of 124,645,632 parameters. Moreover, BERT
models can struggle with complex language. Kim et al. (2022) trained a BERT model on two
X (Twitter) datasets: one for general COVID-19 misinformation and one focused on garlic as a
COVID-19 treatment. While BERT outperformed previous models (Word2Vec & FastText) on
the garlic-specific dataset, it struggled with the general one, particularly with sarcasm. While
BERT can perform well with misinformation classification, computational costs and challenges in
understanding complex aspects of language remain as issues.

Images

To detect misinformation in images or videos, ANNs can be adapted. Convolutional Neural
Networks (CNNs) enhance standard ANN architecture by adding convolutional and pooling
layers. Convolutional layers use small filters (e.g., 3x3 pixels) to scan for patterns, such as parts
of a tail to detect cats. The kernel compares its pattern with the image’s pixels, creating a feature
map. The next convolutional layer searches for larger structures, like the whole tail. Pooling layers
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aggregate the feature map, which is passed to a fully-connected layer for classification. CNNs learn
through backpropagation to adjust kernel weights for image classification.

CNNs can detect misinformation in images, not just text as with RNNs and BERT. Ghai
et al. (2021) evaluated the VGG16 CNN model (Simonyan and Zisserman, 2015), pre-trained on the
ImageNet dataset (>14,000,000 images). VGG16 was then trained and validated on four datasets
(DVMM, CASIAv1.0, CASIAv2.0, IMD2020), containing authentic and tampered versions of a
total of 20,128 images. The validation accuracies were 0.83, 0.76, 0.90, and 0.94 for each dataset.
However, confusion matrices for CASIAv1.0 and IMD2020 revealed difficulty in classifying tampered
images, though authentic ones were correctly identified.

Transformers have found recent applications in image classification, with Vision Transform-
ers (ViTs) (Dosovitskiy et al., 2021) adapted to process images. Unlike regular transformers that
use 1D positional encodings for text tokens, ViTs apply the attention mechanism to image sections
(e.g., 16x16 pixels) with 2D positional encodings. Lamichhane (2025) used a ViT on a dataset of
30,000 images, half real and half generated by a generative adversarial network (GAN)1 The ViT
achieved 0.98 accuracy, outperforming CNN models such as ResNet (He et al., 2015), Xception
(Chollet, 2017), DenseNet (Huang et al., 2018), and VGG. The authors also found a ViT with 12
layers to be an optimal balance between accuracy and computational cost.

Multimodal Misinformation

Misinformation on social media is often multimodal, with users posting videos that include
visual and audio data, captions, comments, and metadata (likes and shares). Models used in
real-world contexts could benefit from capturing this multimodality.

Shang et al. (2021) developed the TikTok misinformation detection framework (Tik-
Tec) to detect COVID-19 misinformation in TikTok videos by analysing frames, audio, captions,
and metadata. TikTec has four modules: Caption-guided Visual Representation Learning (CVRL)
identifies misinformation features from frames using its caption and audio; Acoustic-aware Speech
Representation Learning (ASRL) detects misinformation in the audio; Visual-speech Co-attentive
Information Fusion (VCIF) models the relationship between frames and audio to identify correla-
tions; and Supervised Misleading Video Detection (SMVD) – an ANN – classifies videos as ”true”
or ”false” based on VCIF.

TikTec was tested on 891 pre-labelled English TikTok videos and compared to five com-
mon methods for video misinformation detection, such as a CNN-LSTM model and ResNet. It
outperformed these methods with an overall accuracy of 0.7231. The authors also assessed Tik-
Tec’s performance with various modules removed (e.g., without the CVRL module) and found it
still outperformed alternative methods. While TikTec may not yet be ideal for practical use due
to accuracy and generalisability to other languages, its architecture offers a promising approach
for developing video misinformation detectors. Notably, Shang et al. (2025) incorporated a self-
attention mechanism from transformers into the MultiTec model, replacing the VCIF module

1GANs involve two neural networks: a generator that creates fake images and a discriminator that detects them,
each improving through competition. GANs are often used to create deepfakes.
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from Shang et al. (2021), and applied it to two COVID-19-related datasets of TikTok and YouTube
Shorts videos. MultiTec outperformed other models, including TikTec, with an accuracy of 0.7442.
The authors also noted that ”videos containing satire or educational content debunking myths
sometimes triggered false positives” (Shang et al., 2025, p.12), highlighting challenges in detecting
complex language features.

Misinformation Spread

Rather than focusing on just a social media post’s content, we can examine its relationship to
the wider social network. For instance, we could model the network as a graph, with the post as
a node connected to other nodes representing users and other posts. Similar posts could be linked
through edges (e.g., shared users, topics) – a static approach. Furthermore, over time this graph
could evolve, adding connections with users who interact with the post – a dynamic approach.
Graph neural networks (GNNs) can be used to represent social media posts in these ways.

GNNs use graph structures with nodes (containing feature data, e.g., user info, post metadata)
and edges (relationships between nodes, e.g., a user (node1) likes (edge1,2) a post node2) as inputs.
Layers correspond to increasing neighbour levels: the first layer includes immediate neighbours,
the next adds 2-hop neighbours, and so on. For example, a GNN could classify posts as ”fake”
or ”true” by learning from post content and its relationships. During forward propagation, a
node’s information is updated using its features and aggregated neighbour features (e.g., weighted
average). Backpropagation minimises a loss function (e.g., cross-entropy loss), adjusting weights for
aggregation and node features. This enables GNNs to analyse both content and relationships in the
context of misinformation. Variations like Graph Attention Networks (GATs) use a self-attention
mechanism to fine-tune node connection weights.

Song et al. (2022) develop a Dynamic Graph Neural Network for Fake News detection (DGNF),
consisting of two modules: a ”structure-aware” module capturing graph structure over time using
static snapshots, and a ”temporal-aware” module tracking variations between snapshots. DGNF
has two variants: ”temporal self-attention” (DGNF-tsn), using transformers, and ”temporal con-
volutional” (DGNF-tcn), using CNN kernels. Tested on three datasets from Twitter and Weibo,
DGNF models nodes (tweets, retweets, replies) and edges (retweet/reply behaviours) with times-
tamps. Comparing DGNF to 11 models, including GAT, a graph convolutional network (GCN),
and a recursive neural network (RvNN), both variants performed best in detecting real and fake
news, with DGNF-tsn superior overall – the authors argue this is due to its flexibility in modelling
node interactions over time, relative to DGNF-tcn. This demonstrates how ANNs can process
complex data structures, modelling misinformation as a distinct object within social networks.
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Discussion

This essay explored how ANNs detect misinformation, from RNNs, LSTM, and BERT for text
interpretation, CNNs and ViTs for image pattern recognition, the integration of multimodal data
and the use of GNNs to model misinformation in social media networks. Despite the segmentation,
these methods often overlap, with CNNs and GNNs also applicable to text, such as CNNs using
kernels to identify sentence substructures and GNNs representing sentences as graphs. The key
takeaway is that ANN methods are versatile and effective for misinformation detection. We’ll now
explore how social media companies leverage ANNs for misinformation detection.

In a 2020 blog post, Facebook AI (now Meta AI) revealed that ObjectDNA (Meta, 2020),
based on the Object Embeddings for Spliced Image Retrieval (OE-SIR) (Chen et al., 2021)
model, was used to detect misinformation on Facebook. OE-SIR, built on the Faster R-CNN
(Ren et al., 2016) architecture. Chen et al. (2021) passed spliced images as queries and asked each
evaluated model to retrieve the correct authentic image using two databases: COCO-Fake and PIR.
The models aimed to return all relevant images, with recall at K (R@K) measuring the proportion
of the relevant images that appear in the top K results. OE-SIR outperformed other models at R@1
and R@10 and outperformed in F1 score for an image splicing localisation task (locating spliced
objects in an image). This approach enabled Facebook AI to identify ”misinformation objects”
directly in the image, avoiding the need to aggregate across each image individually, as would be
required without object embeddings.

Despite ANNs’ effectiveness, some social media companies are shifting from ANN-driven detec-
tion to crowdsourced, community-driven approaches. In early 2025, Meta’s CEO Mark Zuckerberg
announced the replacement of independent fact-checkers with ”community notes”, similar to X’s
approach (McMahon et al., 2025). Community notes, corrections to misleading posts added by
users based on bipartisan agreement, appear reasonably effective. A study of 205 random notes
on X found 97% accurately corrected COVID-19 misinformation (Allen et al., 2024). Addition-
ally, Renault et al. (2024) found that adding a community note to a misinformation post reduced
retweets by half and increased tweet deletion probability by 80%. The rationale from Meta is
that traditional fact-checkers are politically biased: ”Experts, like everyone else, have their own
biases and perspectives. This showed up in the choices some made about what to fact check and
how.” (Kaplan, 2025). Interestingly, research by Maldita, analysing 1,175,837 notes, found that
fact checkers were the third most cited source, and notes based on fact checkers were more trustwor-
thy and quicker to appear. Furthermore, Chuai et al. (2024) found that community note creation
lags behind the rapid spread of misinformation on X. While community notes are accurate and
help address misinformation, they’re too slow and still heavily rely on fact-checkers. Instead, ANN
methods could be more widely adopted, complementing, rather than replacing, community-driven
approaches. ANNs can speed up misinformation detection. Zhou et al. (2024) propose MUSE, a
large-language model that generates explanations of post accuracy within 2 minutes, outperforming
GPT-4 and high-quality layperson responses (i.e. current community notes). This approach could
then allow the community to rate and amend the generated notes if needed. Other proposals, like
supernotes, generated from community notes, show higher user-rated helpfulness, source quality,
and comprehensiveness (De et al., 2024). However, these promising approaches appear to conflict
with the perspectives of social media companies.
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Conclusion

In conclusion, misinformation on social media is a major challenge for society. ANN methods
have demonstrated effectiveness in detecting misinformation via text, images, video, and social
network propagation. While ANNs show promise in combating misinformation, current efforts by
social media companies indicate that more must be done to promote ANN adoption in addressing
this issue.
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